ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
NN Asks: What did you learn from ANS’s Nuclear 101?
Mike Harkin
When ANS first announced its new Nuclear 101 certificate course, I was excited. This felt like a course tailor-made for me, a transplant into the commercial nuclear world. I enrolled for the inaugural session held in November 2024, knowing it was going to be hard (this is nuclear power, of course)—but I had been working on ramping up my knowledge base for the past year, through both my employer and at a local college.
The course was a fast-and-furious roller-coaster ride through all the key components of the nuclear power industry, in one highly challenging week. In fact, the challenges the students experienced caught even the instructors by surprise. Thankfully, the shared intellectual stretch we students all felt helped us band together to push through to the end.
We were all impressed with the quality of the instructors, who are some of the top experts in the field. We appreciated not only their knowledge base but their support whenever someone struggled to understand a concept.
J. L. Doane
Fusion Science and Technology | Volume 53 | Number 1 | January 2008 | Pages 159-173
Technical Paper | Special Issue on Electron Cyclotron Wave Physics, Technology, and Applications - Part 2 | doi.org/10.13182/FST08-A1662
Articles are hosted by Taylor and Francis Online.
Low-loss circular waveguides will be needed for a large number of millimeter-wave transmission lines on ITER, including those transmitting electron cyclotron power and diagnostic signals. In order to provide low-loss transmission, the waveguides need to be several wavelengths in diameter. Corrugating the walls reduces the loss further not only in straight runs but also at bends, and makes the waveguide robust against small deformations. We present results of theoretical calculations showing that these properties can be maintained over very wide bandwidths suitable for ITER applications. The computer code used to make these calculations is based on a space-harmonic analysis of the fields. Measurements on waveguides are described that validate the theory for corrugated waveguides semiquantitatively. Tolerances on the corrugation geometry, waveguide bore, waveguide junctions, input Gaussian beam alignment, and waveguide support alignment are discussed. It is shown that the low-loss properties of corrugated waveguide are insensitive to many variations in geometry and deviations from ideality. Finally, some fabrication considerations are presented. In order to provide more complete coverage of the waveguides themselves, only brief mention is made of the losses due to input coupling and components such as bends. Some review material and some level of technical detail are both presented.