ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Fermilab center renamed after late particle physicist Helen Edwards
Fermi National Accelerator Laboratory’s Integrated Engineering Research Center, which officially opened in January 2024, is now known as the Helen Edwards Engineering Center. The name was changed to honor the late particle physicist who led the design, construction, commissioning, and operation of the lab’s Tevatron accelerator and was part of the Water Resources Development Act signed by President Biden in December 2024, according to a Fermilab press release.
A. Bruschi, S. Cirant, A. Moro, A. Simonetto
Fusion Science and Technology | Volume 53 | Number 1 | January 2008 | Pages 97-103
Technical Paper | Special Issue on Electron Cyclotron Wave Physics, Technology, and Applications - Part 2 | doi.org/10.13182/FST08-A1657
Articles are hosted by Taylor and Francis Online.
A hybrid quasi-optical waveguide resonating device providing millimeter-wave beam switching and combination at high power is described in this paper. It can be realized, starting from the beam-splitting properties of the rectangular corrugated waveguide with aperture much greater than the wavelength , by arranging the waveguides in a resonating ring configuration. This kind of waveguide, cut at an appropriate length, has been proposed for the remote steering (RS) system of the ITER upper electron cyclotron resonance heating (ECRH) launcher, because of its imaging properties. In fact, beam steering can be performed far from the plasma edge since an input beam is transformed into an output beam with the same angle with the waveguide axis as the input one. Multiple imaging properties, derived by the fractional Talbot effect, are applied at waveguide sections cut at fractional lengths and lead to 3-dB beam-splitting properties for a length equivalent to half the length of an RS waveguide. Ring-type resonant devices with two outputs are obtained by setting two or more waveguides in properly arranged loops. The power distribution in the two output channels available can be controlled either mechanically, moving the mirrors used to couple the different sections by fractions of the wavelength , or varying the source frequency by a fraction / << 1. The exploitation of a second input port allows beams of different gyrotrons with nearly the same frequency to be coupled to the same transmission line. This relatively compact device can be evaluated for application into the ITER ECRH transmission line, with advantages on beam routing control.