ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
M. Goniche, G. T. A. Huysmans, F. Turco, P. Maget, J. L. Ségui, J. F. Artaud, G. Giruzzi, F. Imbeaux, P. Lotte, D. Mazon, D. Molina, V. S. Udintsev
Fusion Science and Technology | Volume 53 | Number 1 | January 2008 | Pages 88-96
Technical Paper | Special Issue on Electron Cyclotron Wave Physics, Technology, and Applications - Part 2 | doi.org/10.13182/FST08-A1656
Articles are hosted by Taylor and Francis Online.
Low-frequency (5- to 20-kHz) and high-frequency (40- to 200-kHz) modes are studied during radio-frequency heating experiments on the Tore Supra tokamak by means of correlation electron cyclotron emission. High-frequency modes are detected when the plasma is heated by ion cyclotron range of frequency waves in the minority D(H) heating scheme in combination with lower hybrid current drive (LHCD) producing a flat or slightly reversed q-profile. They are identified as Alfvén cascade modes. When this mode is triggered, fast ion losses (<20%) are detected from the neutron emission rate, and an additional heat load on plasma-facing components can be measured by an infrared camera when the fast ion energy is sufficiently large. Low-frequency modes are commonly triggered during LHCD experiments performed at low loop voltage. This mode can be observed with moderate lower hybrid power when the q-profile is monotonic or at higher power when the q-profile is flat in the core (r/a < 0.2) or reversed. It is identified, in most cases, as an electron fishbone-like mode. These modes can be stabilized by a slight modification of the q-profile provided by an increase of lower hybrid power or by a small addition of electron cyclotron current device.