ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Discovering, Making, and Testing New Materials: SRNL’s Center For Hierarchical Waste Form Materials
Savannah River National Laboratory researchers are building on the laboratory’s legacy of using cutting-edge science to effectively immobilize nuclear waste in innovative ways. As part of the Center for Hierarchical Waste Form Materials, SRNL is leveraging its depth of experience in radiological waste management to explore new frontiers in the industry.
Y. Yoshimura, T. Akiyama, M. Isobe, A. Shimizu, C. Suzuki, C. Takahashi, K. Nagaoka, S. Nishimura, T. Minami, K. Matsuoka, S. Okamura, CHS Group, S. Kubo, T. Shimozuma, H. Igami, T. Notake, T. Mutoh
Fusion Science and Technology | Volume 53 | Number 1 | January 2008 | Pages 54-61
Technical Paper | Special Issue on Electron Cyclotron Wave Physics, Technology, and Applications - Part 2 | doi.org/10.13182/FST08-A1652
Articles are hosted by Taylor and Francis Online.
Second-harmonic electron cyclotron (EC) current drive experiments have been performed in the Compact Helical System (CHS). The driven current changes its direction according to the change of the EC-wave beam direction in agreement with an expectation from the Fisch and Boozer theory in the case of low-field-side injection of EC waves. The EC-driven current varies as a function of the magnetic axis position of CHS plasmas. The cause of the variation was experimentally investigated by a magnetic field scan. Setting the second-harmonic resonance layer near the magnetic axis was favorable to maximize the total EC-driven current. The main cause of the dependence of the driven current on the magnetic axis position is attributed to the change of distribution of the magnetic field along the beam path due to the change of the beam direction to aim at the magnetic axis in the three-dimensional helical magnetic field of the CHS.