ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Sante Cirant
Fusion Science and Technology | Volume 53 | Number 1 | January 2008 | Pages 12-38
Technical Paper | Special Issue on Electron Cyclotron Wave Physics, Technology, and Applications - Part 2 | doi.org/10.13182/FST08-A1650
Articles are hosted by Taylor and Francis Online.
In any system designed for electron cyclotron (EC) heating (ECH) and EC current drive in fusion plasmas, the launcher is the matching element between the plasma and the transmission line. Only an appropriate launcher achieves efficient use of the gyrotron power for the many different high-power EC H&CD applications. The frontier is now set at [approximately equal to]4 MW of launched power at 110 to 140 GHz for [approximately equal to]10 s, to be further moved to [approximately equal to]10 MW, 1000 s in the near future. ITER will push the limit to 20 MW, 170 GHz. The workhorse of the antenna system is the front steering setup consisting of a movable mirror, or a mirror array, in front of the hot plasma, which provides for full flexibility in the EC H&CD applications. However, because of the concern associated with cooled and movable parts in a hostile environment, an arrangement with movable mirrors positioned far from the vessel port, and connected to the plasma by imaging waveguides, is being developed as a remote steering backup solution. In a reactor, where flexibility is much less relevant than reliability, the situation could reverse. Techniques for a radial scan of the deposition layer different from front beam steering are discussed in this paper. The ideal goal would be a 100% coupling of the launched EC power, to occur within [approximately equal to]2% of the plasma size and through pipes of size negligible with respect to the vessel, without negative impact on plasma periphery in spite of the high power densities transmitted through the edge.