ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Sante Cirant
Fusion Science and Technology | Volume 53 | Number 1 | January 2008 | Pages 12-38
Technical Paper | Special Issue on Electron Cyclotron Wave Physics, Technology, and Applications - Part 2 | doi.org/10.13182/FST08-A1650
Articles are hosted by Taylor and Francis Online.
In any system designed for electron cyclotron (EC) heating (ECH) and EC current drive in fusion plasmas, the launcher is the matching element between the plasma and the transmission line. Only an appropriate launcher achieves efficient use of the gyrotron power for the many different high-power EC H&CD applications. The frontier is now set at [approximately equal to]4 MW of launched power at 110 to 140 GHz for [approximately equal to]10 s, to be further moved to [approximately equal to]10 MW, 1000 s in the near future. ITER will push the limit to 20 MW, 170 GHz. The workhorse of the antenna system is the front steering setup consisting of a movable mirror, or a mirror array, in front of the hot plasma, which provides for full flexibility in the EC H&CD applications. However, because of the concern associated with cooled and movable parts in a hostile environment, an arrangement with movable mirrors positioned far from the vessel port, and connected to the plasma by imaging waveguides, is being developed as a remote steering backup solution. In a reactor, where flexibility is much less relevant than reliability, the situation could reverse. Techniques for a radial scan of the deposition layer different from front beam steering are discussed in this paper. The ideal goal would be a 100% coupling of the launched EC power, to occur within [approximately equal to]2% of the plasma size and through pipes of size negligible with respect to the vessel, without negative impact on plasma periphery in spite of the high power densities transmitted through the edge.