ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Fermilab center renamed after late particle physicist Helen Edwards
Fermi National Accelerator Laboratory’s Integrated Engineering Research Center, which officially opened in January 2024, is now known as the Helen Edwards Engineering Center. The name was changed to honor the late particle physicist who led the design, construction, commissioning, and operation of the lab’s Tevatron accelerator and was part of the Water Resources Development Act signed by President Biden in December 2024, according to a Fermilab press release.
K. Noborio, Y. Yamamoto, S. Konishi
Fusion Science and Technology | Volume 52 | Number 4 | November 2007 | Pages 1105-1109
Technical Paper | Nonelectric Applications | doi.org/10.13182/FST07-A1645
Articles are hosted by Taylor and Francis Online.
The neutron production rate (NPR) through fusion reaction on the surface of electrode(s) of an IECF (Inertial Electrostatic Confinement Fusion) device, which is expected to increase at low pressure, has been evaluated with a one dimensional simulation code and an experimental device. In the simulation, the NPR on the cathode and the anode has been evaluated individually as a function of pressure. The simulation results reveal that the NPR on the cathode increases at low pressure and that on the anodes increases at high pressure. In the experiment, titanium coated electrodes have been used in order to rise the adsorbed amount, and the results show same tendency along with the pressure as calculation results. And the maximum value increases 3 times by coating titanium.