ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
M. Imai, Y. Iriki, A. Itoh
Fusion Science and Technology | Volume 63 | Number 3 | May 2013 | Pages 392-399
Technical Paper | Selected papers from IAEA-NFRI Technical Meeting on Data Evaluation for Atomic, Molecular and Plasma-Material Interaction Processes in Fusion, September 4-7, 2012, Daejeon, Republic of Korea | doi.org/10.13182/FST13-A16447
Articles are hosted by Taylor and Francis Online.
Single-electron-capture cross sections 10 for W+ projectile ions on Ar and Kr atomic gas targets at 10 keV (55 eV/u) and on H2, D2, CH4, C2H6, and C3H8 molecular gas targets at between 5.0 and 10 keV (27 and 55 eV/u) were experimentally derived for the first time. With our published single-electron-capture cross sections q q-1 for Beq+, Bq+, Cq+ , Feq+ , Niq+ , and Wq+ (q = 1 for Fe; q = 1,2 for the others) ions in low energy, an attempt was made to draw scaling behavior of single-electron-capture cross sections for such slow low-q ions on target species. Established scaling formulas are found to reproduce the measured cross sections generally within a magnitude and with higher precision for specific initial charge state and target species.