ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Nuclear waste: Trying again, with an approach that is flexible and vague
The Department of Energy has started over on the quest for a place to store used fuel. Its new goal, it says, is to foster a national conversation (although this might better be described as many local conversations) about a national problem that can only be solved at the local level with a “consent-based” approach. And while the department is touting the various milestones it has already reached on the way to an interim repository, the program is structured in a way that means its success will not be measurable for years.
G. Y. Liang, N. R. Badnell, G. Zhao
Fusion Science and Technology | Volume 63 | Number 3 | May 2013 | Pages 372-377
Technical Paper | Selected papers from IAEA-NFRI Technical Meeting on Data Evaluation for Atomic, Molecular and Plasma-Material Interaction Processes in Fusion, September 4-7, 2012, Daejeon, Republic of Korea | doi.org/10.13182/FST13-A16444
Articles are hosted by Taylor and Francis Online.
R-matrix calculations of electron impact excitations have been done for several isoelectronic sequences under the program of the Atomic Processes for Astrophysical Plasmas network in the United Kingdom. The intermediate-coupling framework transformation R-matrix approach was used to generate data in this program since it is less resource (time/memory) demanding than the full Breit-Pauli R-matrix method, without reduction of accuracy. A detailed accuracy assessment was done for four/five/six selected ions spanning the isoelectronic sequence, which provides insight into the behavior of the whole sequence of ions. For each ion, we adopted the following procedure: First, the target structure was assessed by comparing the calculated level energies with available experimental data and with previous calculations using different methods. Second, weighted oscillator strengths or line strengths or radiative decay rates were compared with various available theoretical works for several transitions. Usually, a "survey" comparison with another database has been done for all available transitions by way of a scatter plot. Finally, direct comparison for the excitation (effective) collision strength is done with available measurements or with previously published data. A survey comparison with another database is usually presented to investigate the spread of the consistency or inconsistency among the different calculations.