ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Masami Ohnishi, Osawa Hodaka, Tomoya Furukawa, Takashi Suma
Fusion Science and Technology | Volume 52 | Number 4 | November 2007 | Pages 1101-1104
Technical Paper | Nonelectric Applications | doi.org/10.13182/FST07-A1644
Articles are hosted by Taylor and Francis Online.
A neutron production rate (NPR) of 2.3 × 106 1/sec has been achieved in a spherically convergent D-D fusion neutron generator with the applied voltage 60 kV and the steady-state discharge current 40 mA. The scaling of NPR with respect to the current, however, is linear. The results revealed the fact that the fusion reaction occurs mainly between the accelerated molecular ion D2+ and neutral gas D20. In considering a future application of the neutron source, the dependence on a square current, i.e., the fact that the main reactions are caused by accelerated ion beam-beam colliding fusions is most desirable. A new IEC device has been constructed in order to obtain evidence of beam-beam colliding fusions. The device is designed to operate in a short pulse of the voltage -70 kV and the large current 100 A. This is the first experiment to draw a current of several tens of amperes in IEC devices. The discharge characteristics were studied with regard to the relations of the current, applied voltage and gas pressure. The neutron production rate was also measured, and the conditions to realize accelerated ion beam-beam fusion are discussed.