ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
David R. Boris, Zhenqiang Ma, Hao-Chih Yuan, Robert P. Ashley, John F. Santarius, Gerald L. Kulcinski, Clayton Dickerson, Todd Allen
Fusion Science and Technology | Volume 52 | Number 4 | November 2007 | Pages 1066-1069
Technical Paper | Plasma Engineering and Diagnostics | doi.org/10.13182/FST07-A1637
Articles are hosted by Taylor and Francis Online.
Using a single junction PIN (p-type, intrinsic, n-type) diode, made of silicon, and doped with boron and phosphorus, high energy protons have been converted to electricity, through ionization from electronic stopping in the silicon, at an efficiency of 0.2%. A simulation of 3.02 MeV D-D protons has been performed, using a 3 MeV linear accelerator. Proton fluxes of ~3 × 1010 protonscm-2×s-1 were incident on a PIN diode with 0.7 cm2 of surface area facing the incident protons. Losses in efficiency as a function of proton fluence are compared with dpa (displacements per atom) rates calculated using the Monte Carlo ion transport code TRIM (Transport and Ranges of Ions in Matter).