ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Christopher E. Hamilton, Nickolaus A. Smith, Jon R. Schoonover, Kimberly A. Defriend Obrey, Nicholas Bazin, Tina Jewell
Fusion Science and Technology | Volume 63 | Number 2 | March-April 2013 | Pages 301-304
Technical Paper | Selected papers from 20th Target Fabrication Meeting, May 20-24, 2012, Santa Fe, NM, Guest Editor: Robert C. Cook | doi.org/10.13182/FST13-A16354
Articles are hosted by Taylor and Francis Online.
Silica aerogel, an extremely low-density and high-surface-area material, is a vital component of many target designs for inertial confinement fusion and high-energy-density physics experiments. Silica aerogel utilized in targets is found in a variety of densities and configurations. Material properties must be well characterized to minimize uncertainties in experimental data. In particular, density must be accurately known to predict shock velocity and timing of diagnostics. One potentially problematic attribute of silica is its hygroscopic nature. Here we describe adsorption of ambient moisture by silica aerogel, based on its density and processing parameters. Quick and simple methods of characterizing water uptake are needed to provide confidence in aerogel components. We find that aerogel manufactured using supercritical methanol is much more stable toward moisture (and therefore more suitable for use in targets) than that produced using supercritical carbon dioxide. Aerogel materials were characterized by thermogravimetric analysis and Fourier transform infrared spectroscopy.