ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Fermilab center renamed after late particle physicist Helen Edwards
Fermi National Accelerator Laboratory’s Integrated Engineering Research Center, which officially opened in January 2024, is now known as the Helen Edwards Engineering Center. The name was changed to honor the late particle physicist who led the design, construction, commissioning, and operation of the lab’s Tevatron accelerator and was part of the Water Resources Development Act signed by President Biden in December 2024, according to a Fermilab press release.
K. Tomlinson, D. G. Schroen
Fusion Science and Technology | Volume 63 | Number 2 | March-April 2013 | Pages 288-295
Technical Paper | Selected papers from 20th Target Fabrication Meeting, May 20-24, 2012, Santa Fe, NM, Guest Editor: Robert C. Cook | doi.org/10.13182/FST13-A16352
Articles are hosted by Taylor and Francis Online.
Preshot characterization of the thickness and form of material samples in targets for dynamic materials properties experiments presents unique challenges. Because of design limitations, the measurement tools currently used introduce increasing error as samples deviate from perfect flatness or thickness uniformity. Contact measurements such as height gages and micrometers, for example, are insensitive to thickness variations occurring over spatial scales smaller than the contact probes. In addition, they measure thickness but not form and often damage samples. Standard confocal microscopes overcome some of these problems but can only measure form on the side of the sample that they see. Also, by design, they consistently overestimate thickness because form errors on the side of the sample against the reference surface always prevent perfect contact with it. We are developing a technique that may prove to be superior to both of these methods at characterizing both thickness and form of samples with both imperfect flatness and nonuniform thickness using only an interferometric optical profiler, an inexpensive fixture, a gage block, and a commercial three-dimensional modeling software. The end result is a computer model of the actual sample.