ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Texas-based WCS chosen to manage U.S.-generated mercury
A five-year, $17.8 million contract has been awarded to Waste Control Specialists for the long-term management and storage of elemental mercury, the Department of Energy’s Office of Environmental Management announced on November 21.
P. B. Mirkarimi, K. A. Bettencourt, N. E. Teslich, S. C. Peterson
Fusion Science and Technology | Volume 63 | Number 2 | March-April 2013 | Pages 282-287
Technical Paper | Selected papers from 20th Target Fabrication Meeting, May 20-24, 2012, Santa Fe, NM, Guest Editor: Robert C. Cook | doi.org/10.13182/FST13-TFM20-34
Articles are hosted by Taylor and Francis Online.
The equation of state (EOS) and other parameters at high pressures and low temperatures are of significant interest. One example is iron, where knowledge of the EOS at high pressure is needed to understand planetary interiors and planetary development. Targets are needed to perform these important measurements on experimental platforms such as Omega, National Ignition Facility (NIF), and the Z-machine. There is a need for thicker films for targets for the NIF and Z-machine platforms, which is technically challenging because of coating stress and other issues. We present results showing that we successfully sputter deposited stepped iron and tantalum films up to 90+ m thick for targets on NIF and have sputter deposited (unstepped) tantalum films over 1700 m (1.7 mm!) thick, which are desired for targets for Z-machine EOS experiments. This is generally made possible by the low stress achieved in the tantalum films (as low as 25 MPa). We will also report some process improvement achievements, such as a shaper roll-off for the Fe step edges, as well as some characterization results of the microstructure of the very thick films. For example, interruption of the growth with a brief ambient exposure appears to have a minor impact on the columnar grain growth.