ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
State legislation: Colorado redefines nuclear as “clean energy resource”
Colorado Gov. Jared Polis signed a bill into law on Monday that adds nuclear to the state’s clean energy portfolio—making nuclear power eligible for new sources of project financing at the state, county, and city levels.
P. B. Mirkarimi, K. A. Bettencourt, N. E. Teslich, S. C. Peterson
Fusion Science and Technology | Volume 63 | Number 2 | March-April 2013 | Pages 282-287
Technical Paper | Selected papers from 20th Target Fabrication Meeting, May 20-24, 2012, Santa Fe, NM, Guest Editor: Robert C. Cook | doi.org/10.13182/FST13-TFM20-34
Articles are hosted by Taylor and Francis Online.
The equation of state (EOS) and other parameters at high pressures and low temperatures are of significant interest. One example is iron, where knowledge of the EOS at high pressure is needed to understand planetary interiors and planetary development. Targets are needed to perform these important measurements on experimental platforms such as Omega, National Ignition Facility (NIF), and the Z-machine. There is a need for thicker films for targets for the NIF and Z-machine platforms, which is technically challenging because of coating stress and other issues. We present results showing that we successfully sputter deposited stepped iron and tantalum films up to 90+ m thick for targets on NIF and have sputter deposited (unstepped) tantalum films over 1700 m (1.7 mm!) thick, which are desired for targets for Z-machine EOS experiments. This is generally made possible by the low stress achieved in the tantalum films (as low as 25 MPa). We will also report some process improvement achievements, such as a shaper roll-off for the Fe step edges, as well as some characterization results of the microstructure of the very thick films. For example, interruption of the growth with a brief ambient exposure appears to have a minor impact on the columnar grain growth.