ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Fermilab center renamed after late particle physicist Helen Edwards
Fermi National Accelerator Laboratory’s Integrated Engineering Research Center, which officially opened in January 2024, is now known as the Helen Edwards Engineering Center. The name was changed to honor the late particle physicist who led the design, construction, commissioning, and operation of the lab’s Tevatron accelerator and was part of the Water Resources Development Act signed by President Biden in December 2024, according to a Fermilab press release.
Greg C. Randall, James Vecchio, Jack Knipping, Don Wall, Tane Remington, Paul Fitzsimmons, Matthew Vu, Emilio M. Giraldez, Brent E. Blue, Michael Farrell, Abbas Nikroo
Fusion Science and Technology | Volume 63 | Number 2 | March-April 2013 | Pages 274-281
Technical Paper | Selected papers from 20th Target Fabrication Meeting, May 20-24, 2012, Santa Fe, NM, Guest Editor: Robert C. Cook | doi.org/10.13182/FST63-2-274
Articles are hosted by Taylor and Francis Online.
Rippled metal foils are currently sought for high-strain-rate material strength studies at laser facilities. Because these metals typically cannot be diamond turned, we employ a microcoining process to imprint the [approximately]5-m-deep by [approximately]50-m-long ripples into the metal surface. This work details recent process developments to fabricate these rippled metal targets, specifically for iron and tantalum. The process consists of nitriding a steel die, diamond turning the die, and then pressing the die into a polished metal foil of choice. We show: advantages of deeper-nitrided dies, improved foil thickness uniformity and characterization, variation in coining stress over different materials, pattern quality characterization, bowing reduction, and patterning of multimode ripples.