ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
Latest News
ANS joins others in seeking to discuss SNF/HLW impasse
The American Nuclear Society joined seven other organizations to send a letter to Energy Secretary Christopher Wright on July 8, asking to meet with him to discuss “the restoration of a highly functioning program to meet DOE’s legal responsibility to manage and dispose of the nation’s commercial and legacy defense spent nuclear fuel (SNF) and high-level radioactive waste (HLW).”
L. Wu, H. Momota, G. H. Miley
Fusion Science and Technology | Volume 52 | Number 4 | November 2007 | Pages 1056-1060
Technical Paper | Plasma Engineering and Diagnostics | doi.org/10.13182/FST07-A1635
Articles are hosted by Taylor and Francis Online.
Interactions of charge exchange and ionization of fast, low-charged heavy ions are very important in heavy ion beam inertial confinement fusion. These effects are crucial indetermination of the final focusing in the chamber. However, corresponding cross section data is very limited and/or not accurate over the entire range of energies and ions of interest. This paper reports on our recent studies of cross sections for interactions of heavy ions with noble gases. Since a quantum mechanical treatment encounters a complex many-body problem, a classical trajectory Monte Carlo method is employed. The distribution of inner electrons is estimated by a modified Hartree-Fock model for the purpose of decreasing the number of electron orbits calculated, a micro-canonical ensemble for the initial electron probability distribution is introduced to describe quantum mechanical uncertainty. Cross sections are evaluated over a limited energy range; then scaling laws are developed to reflect the change probability for the beam charge state over a larger energy range.