ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
State legislation: Colorado redefines nuclear as “clean energy resource”
Colorado Gov. Jared Polis signed a bill into law on Monday that adds nuclear to the state’s clean energy portfolio—making nuclear power eligible for new sources of project financing at the state, county, and city levels.
J. F. Hund, J. W. Crippen, K. Clark, N. Martinez, D. J. Jasion, M. P. Farrell, D. T. Frey
Fusion Science and Technology | Volume 63 | Number 2 | March-April 2013 | Pages 252-256
Technical Paper | Selected papers from 20th Target Fabrication Meeting, May 20-24, 2012, Santa Fe, NM, Guest Editor: Robert C. Cook | doi.org/10.13182/FST13-A16346
Articles are hosted by Taylor and Francis Online.
The National Ignition Campaign (NIC) target consists of precisely machined and assembled components. A subset of the components of this target is the aluminum shielding around the silicon support and cooling arms, which is designed to alleviate harmful unconverted light reflecting from the arms into the laser optics. This NIC target shielding consists of two external shields and four inner shields located between the arms. Recently, we have developed a process to add a plastic coating to the shields with precisely defined edges that can survive pressing the part into a three-dimensional shape. After this process was demonstrated on prototypes, it was further refined to improve yield and is currently being used to fabricate and deliver parts for NIC experiments on a regular basis. The final process that we developed consists of seven steps to fabricate these shields: (1) applying a photolithographed plastic layer to electrically isolate the shields from the electrical traces on the cooling arms, (2) plasma etching to improve adhesion during the subsequent aluminum coating, (3) large-batch electron-beam aluminum coating, (4) laser cutting and custom die cutting to various shapes and specified patterns, (5) utilizing heat pressing techniques that soften the plastic coating enough to be coined into a three-dimensional shape, (6) accurate positioning and bonding of Mylar liners under the tops of the shields, and (7) final characterization. Through these process steps high process yields were achieved against the rigorous NIC requirements.