ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Fermilab center renamed after late particle physicist Helen Edwards
Fermi National Accelerator Laboratory’s Integrated Engineering Research Center, which officially opened in January 2024, is now known as the Helen Edwards Engineering Center. The name was changed to honor the late particle physicist who led the design, construction, commissioning, and operation of the lab’s Tevatron accelerator and was part of the Water Resources Development Act signed by President Biden in December 2024, according to a Fermilab press release.
J. S. Jaquez, A. Nikroo, N. A. Hein, W. Sweet
Fusion Science and Technology | Volume 63 | Number 2 | March-April 2013 | Pages 226-231
Technical Paper | Selected papers from 20th Target Fabrication Meeting, May 20-24, 2012, Santa Fe, NM, Guest Editor: Robert C. Cook | doi.org/10.13182/FST13-A16342
Articles are hosted by Taylor and Francis Online.
Simulations of ignition-scale hohlraums show that the addition to the hohlraum of a submicron-thick Au/B interior liner containing [approximately]20 to 40 at. % B likely reduces laser backscatter by reducing the stimulated Brillouin scattering. By reducing the backscatter, the amount of energy available to compress the inertial confinement fusion capsule is increased while the likelihood of laser damage at National Ignition Facility (NIF) is minimized. A specialized magnetron cosputtering process is used to fabricate Au/B liners between 0.6 and 1.2 m for use on hohlraums shot at NIF to the atomic concentrations of 20 to 40 at. % B. We will discuss recent process improvements, such as LabVIEW process automation, in situ rate and thickness measurements, and optimized coating setup, all of which have increased the hohlraum yield and hohlraum throughput as well as increased control and confidence in Au/B liner thickness and B concentration uniformity and reproducibility. We will also discuss effects of various leaching mechanisms affecting B concentration in the Au/B liner.