ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Fermilab center renamed after late particle physicist Helen Edwards
Fermi National Accelerator Laboratory’s Integrated Engineering Research Center, which officially opened in January 2024, is now known as the Helen Edwards Engineering Center. The name was changed to honor the late particle physicist who led the design, construction, commissioning, and operation of the lab’s Tevatron accelerator and was part of the Water Resources Development Act signed by President Biden in December 2024, according to a Fermilab press release.
H. Streckert, K. Blobaum, B. Chen, J. E. Fair, N. Hein, A. Nikroo, K. Quan, M. Stadermann
Fusion Science and Technology | Volume 63 | Number 2 | March-April 2013 | Pages 213-217
Technical Paper | Selected papers from 20th Target Fabrication Meeting, May 20-24, 2012, Santa Fe, NM, Guest Editor: Robert C. Cook | doi.org/10.13182/FST13-TFM20-18
Articles are hosted by Taylor and Francis Online.
Depleted uranium (DU) hohlraums consist of a sputter-deposited DU layer sandwiched between two sputter-deposited layers of gold and overcoated with a thick electrodeposited gold layer. Production of a multilayered system of dissimilar materials to tight tolerances requires a complex set of process steps. Process drift in production of DU hohlraums resulted in increased failures and led to unacceptably low production yields. Characterization of this failure mechanism indicated poor adhesion between dissimilar layers. Failure of one layer could be traced to the preceding layer. Ultimately, failures were traced to pretreatment of the mandrel for the initial deposition. Pretreatment of the mandrel involves an ion-etch step, which had drifted. Maintenance of the ion gun resulted in improved mandrels and improved process yields. Production yields from the DU sputter deposition were low with failures due to blistering and delamination. Oxidation of the DU due to gettering of residual oxygen or water in the sputter chamber was hypothesized. A process change was implemented to minimize the time between the DU and gold coatings. The change required removal of one production part to incorporate one additional gold sputter source. The production run was thus reduced from five parts to four parts. However, the production yield increased significantly, by 30%.