ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
State legislation: Colorado redefines nuclear as “clean energy resource”
Colorado Gov. Jared Polis signed a bill into law on Monday that adds nuclear to the state’s clean energy portfolio—making nuclear power eligible for new sources of project financing at the state, county, and city levels.
H. Streckert, K. Blobaum, B. Chen, J. E. Fair, N. Hein, A. Nikroo, K. Quan, M. Stadermann
Fusion Science and Technology | Volume 63 | Number 2 | March-April 2013 | Pages 213-217
Technical Paper | Selected papers from 20th Target Fabrication Meeting, May 20-24, 2012, Santa Fe, NM, Guest Editor: Robert C. Cook | doi.org/10.13182/FST13-TFM20-18
Articles are hosted by Taylor and Francis Online.
Depleted uranium (DU) hohlraums consist of a sputter-deposited DU layer sandwiched between two sputter-deposited layers of gold and overcoated with a thick electrodeposited gold layer. Production of a multilayered system of dissimilar materials to tight tolerances requires a complex set of process steps. Process drift in production of DU hohlraums resulted in increased failures and led to unacceptably low production yields. Characterization of this failure mechanism indicated poor adhesion between dissimilar layers. Failure of one layer could be traced to the preceding layer. Ultimately, failures were traced to pretreatment of the mandrel for the initial deposition. Pretreatment of the mandrel involves an ion-etch step, which had drifted. Maintenance of the ion gun resulted in improved mandrels and improved process yields. Production yields from the DU sputter deposition were low with failures due to blistering and delamination. Oxidation of the DU due to gettering of residual oxygen or water in the sputter chamber was hypothesized. A process change was implemented to minimize the time between the DU and gold coatings. The change required removal of one production part to incorporate one additional gold sputter source. The production run was thus reduced from five parts to four parts. However, the production yield increased significantly, by 30%.