ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
State legislation: Colorado redefines nuclear as “clean energy resource”
Colorado Gov. Jared Polis signed a bill into law on Monday that adds nuclear to the state’s clean energy portfolio—making nuclear power eligible for new sources of project financing at the state, county, and city levels.
K. P. Youngblood, H. Huang, H. W. Xu, J. Hayes, K. A. Moreno, J. J. Wu, A. Nikroo, C. A. Alford, A. V. Hamza, S. O. Kucheyev, Y. M. Wang, K. J. Wu
Fusion Science and Technology | Volume 63 | Number 2 | March-April 2013 | Pages 208-212
Technical Paper | Selected papers from 20th Target Fabrication Meeting, May 20-24, 2012, Santa Fe, NM, Guest Editor: Robert C. Cook | doi.org/10.13182/FST13-TFM20-23
Articles are hosted by Taylor and Francis Online.
The NIF point design uses a five-layer capsule to modify the X-ray absorption in order to achieve optimized shock timing. A stepped copper dopant design defines the layer structure. The production of the capsule involves pyrolysis to remove the inner plastic mandrel. Copper atoms diffuse radially and azimuthally throughout the capsule during pyrolysis. This diffusion significantly diminishes the capsule performance during implosion. Thermal and coated oxide barrier layers employed between layers mitigate the diffusion of copper during the mandrel removal process. The copper atoms do not diffuse through this barrier during pyrolysis. A capsule fabrication method that produces a capsule with a thin oxide layer will be discussed.