ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Texas-based WCS chosen to manage U.S.-generated mercury
A five-year, $17.8 million contract has been awarded to Waste Control Specialists for the long-term management and storage of elemental mercury, the Department of Energy’s Office of Environmental Management announced on November 21.
H. Xu, K. P. Youngblood, H. Huang, J. J. Wu, K. A. Moreno, A. Nikroo, S. J. Shin, Y. M. Wang, A. V. Hamza
Fusion Science and Technology | Volume 63 | Number 2 | March-April 2013 | Pages 202-207
Technical Paper | Selected papers from 20th Target Fabrication Meeting, May 20-24, 2012, Santa Fe, NM, Guest Editor: Robert C. Cook | doi.org/10.13182/FST13-TFM20-16
Articles are hosted by Taylor and Francis Online.
The point design of beryllium capsules includes three Cu-doped layers in a 160-m-thick beryllium shell to achieve the desired X-ray absorption profile. The beryllium capsules were deposited on glow discharge polymer mandrels using a magnetron sputtering process. Cu diffusion during pyrolysis to remove the mandrels after coating has caused nonuniform distribution of Cu along the azimuthal direction due to inhomogeneous diffusion. This nonuniformity along the azimuthal direction could lead to Rayleigh-Taylor instability during capsule implosion. One of the methods to solve this issue is to incorporate a beryllium oxide diffusion barrier layer at the beryllium-Cu-doped-beryllium layer interfaces. In situ and ex situ beryllium oxide layers have proved to be effective in stopping Cu diffusion. This paper will focus on the approaches we have developed to characterize the in situ and ex situ oxide barrier layer thickness by using a combination of Auger electron spectroscopy profiles and Rutherford backscattering spectrometry measurements.