ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Texas-based WCS chosen to manage U.S.-generated mercury
A five-year, $17.8 million contract has been awarded to Waste Control Specialists for the long-term management and storage of elemental mercury, the Department of Energy’s Office of Environmental Management announced on November 21.
S. Bhandarkar, J. Reynolds, S. Letts, S. Baxamusa, E. Lindsey
Fusion Science and Technology | Volume 63 | Number 2 | March-April 2013 | Pages 177-189
Technical Paper | Selected papers from 20th Target Fabrication Meeting, May 20-24, 2012, Santa Fe, NM, Guest Editor: Robert C. Cook | doi.org/10.13182/FST13-TFM20-33
Articles are hosted by Taylor and Francis Online.
It is well known that control of the intricate surface topography details of the ablator capsule over a wide range of modes is critical for inertial confinement fusion (ICF). Whereas considerable effort has been expended on making the ablator capsule rounder and smoother during its fabrication, it is only more recently that attention has been drawn to particulate contamination on the surface of the capsule that can also contribute to undesirable Rayleigh-Taylor instabilities. In this paper, we explore new methods for cleaning the soft polymeric capsule in the presence of the attached filltube just before its assembly into the final target. These constraints, in conjunction with the extremely demanding specification for the size and the number of particles allowed per specification, present unique challenges and require the implementation of specialized cleaning techniques. Here, we describe the strengths and limitations of these methods and lay out the platform for implementing these into production on the National Ignition Facility (NIF).