ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
S. H. Baxamusa, S. D. Bhandarkar, J. L. Reynolds, B. Maranville, J. Horner, D. C. Mason, C. L. Heinbockel, N. A. Antipa, A. D. Conder
Fusion Science and Technology | Volume 63 | Number 2 | March-April 2013 | Pages 169-176
Technical Paper | Selected papers from 20th Target Fabrication Meeting, May 20-24, 2012, Santa Fe, NM, Guest Editor: Robert C. Cook | doi.org/10.13182/FST13-TFM20-27
Articles are hosted by Taylor and Francis Online.
Because isolated contaminants on an inertial confinement fusion (ICF) ablator capsule can lead to undesirable instabilities during implosion, it is critical to remove particles from the surface of plastic capsules prior to target assembly. Current National Ignition Facility (NIF) specifications require that the capsule surface contain no particles larger than 30 m3 . We have developed a solvent-based cleaning process in which a combination of wetting and hydrodynamic forces is used to dislodge, entrain, and remove particles from the surface of plastic NIF ICF ablators. The process was conceptualized by considering the adhesive force acting between particles and a surface, the hydrodynamic force acting on particles near a surface, and the effect of solvent on these forces. We also performed experiments that showed that, in addition to utilizing the appropriate solvent and hydrodynamic force, the dwell time and surface coverage of the impinging solvent stream govern particle removal efficiency. The results from this combined approach allowed us to develop the engineering and design parameters for a prototype automated cleaning station for NIF capsules. This station can remove particles at efficiencies high enough to meet ignition cleanliness requirements.