ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
S. H. Baxamusa, S. D. Bhandarkar, J. L. Reynolds, B. Maranville, J. Horner, D. C. Mason, C. L. Heinbockel, N. A. Antipa, A. D. Conder
Fusion Science and Technology | Volume 63 | Number 2 | March-April 2013 | Pages 169-176
Technical Paper | Selected papers from 20th Target Fabrication Meeting, May 20-24, 2012, Santa Fe, NM, Guest Editor: Robert C. Cook | doi.org/10.13182/FST13-TFM20-27
Articles are hosted by Taylor and Francis Online.
Because isolated contaminants on an inertial confinement fusion (ICF) ablator capsule can lead to undesirable instabilities during implosion, it is critical to remove particles from the surface of plastic capsules prior to target assembly. Current National Ignition Facility (NIF) specifications require that the capsule surface contain no particles larger than 30 m3 . We have developed a solvent-based cleaning process in which a combination of wetting and hydrodynamic forces is used to dislodge, entrain, and remove particles from the surface of plastic NIF ICF ablators. The process was conceptualized by considering the adhesive force acting between particles and a surface, the hydrodynamic force acting on particles near a surface, and the effect of solvent on these forces. We also performed experiments that showed that, in addition to utilizing the appropriate solvent and hydrodynamic force, the dwell time and surface coverage of the impinging solvent stream govern particle removal efficiency. The results from this combined approach allowed us to develop the engineering and design parameters for a prototype automated cleaning station for NIF capsules. This station can remove particles at efficiencies high enough to meet ignition cleanliness requirements.