ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
S. H. Baxamusa, S. D. Bhandarkar, J. L. Reynolds, B. Maranville, J. Horner, D. C. Mason, C. L. Heinbockel, N. A. Antipa, A. D. Conder
Fusion Science and Technology | Volume 63 | Number 2 | March-April 2013 | Pages 169-176
Technical Paper | Selected papers from 20th Target Fabrication Meeting, May 20-24, 2012, Santa Fe, NM, Guest Editor: Robert C. Cook | doi.org/10.13182/FST13-TFM20-27
Articles are hosted by Taylor and Francis Online.
Because isolated contaminants on an inertial confinement fusion (ICF) ablator capsule can lead to undesirable instabilities during implosion, it is critical to remove particles from the surface of plastic capsules prior to target assembly. Current National Ignition Facility (NIF) specifications require that the capsule surface contain no particles larger than 30 m3 . We have developed a solvent-based cleaning process in which a combination of wetting and hydrodynamic forces is used to dislodge, entrain, and remove particles from the surface of plastic NIF ICF ablators. The process was conceptualized by considering the adhesive force acting between particles and a surface, the hydrodynamic force acting on particles near a surface, and the effect of solvent on these forces. We also performed experiments that showed that, in addition to utilizing the appropriate solvent and hydrodynamic force, the dwell time and surface coverage of the impinging solvent stream govern particle removal efficiency. The results from this combined approach allowed us to develop the engineering and design parameters for a prototype automated cleaning station for NIF capsules. This station can remove particles at efficiencies high enough to meet ignition cleanliness requirements.