ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Fermilab center renamed after late particle physicist Helen Edwards
Fermi National Accelerator Laboratory’s Integrated Engineering Research Center, which officially opened in January 2024, is now known as the Helen Edwards Engineering Center. The name was changed to honor the late particle physicist who led the design, construction, commissioning, and operation of the lab’s Tevatron accelerator and was part of the Water Resources Development Act signed by President Biden in December 2024, according to a Fermilab press release.
S. H. Baxamusa, S. D. Bhandarkar, J. L. Reynolds, B. Maranville, J. Horner, D. C. Mason, C. L. Heinbockel, N. A. Antipa, A. D. Conder
Fusion Science and Technology | Volume 63 | Number 2 | March-April 2013 | Pages 169-176
Technical Paper | Selected papers from 20th Target Fabrication Meeting, May 20-24, 2012, Santa Fe, NM, Guest Editor: Robert C. Cook | doi.org/10.13182/FST13-TFM20-27
Articles are hosted by Taylor and Francis Online.
Because isolated contaminants on an inertial confinement fusion (ICF) ablator capsule can lead to undesirable instabilities during implosion, it is critical to remove particles from the surface of plastic capsules prior to target assembly. Current National Ignition Facility (NIF) specifications require that the capsule surface contain no particles larger than 30 m3 . We have developed a solvent-based cleaning process in which a combination of wetting and hydrodynamic forces is used to dislodge, entrain, and remove particles from the surface of plastic NIF ICF ablators. The process was conceptualized by considering the adhesive force acting between particles and a surface, the hydrodynamic force acting on particles near a surface, and the effect of solvent on these forces. We also performed experiments that showed that, in addition to utilizing the appropriate solvent and hydrodynamic force, the dwell time and surface coverage of the impinging solvent stream govern particle removal efficiency. The results from this combined approach allowed us to develop the engineering and design parameters for a prototype automated cleaning station for NIF capsules. This station can remove particles at efficiencies high enough to meet ignition cleanliness requirements.