ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
N. A. Antipa, S. H. Baxamusa, E. S. Buice, A. D. Conder, M. N. Emerich, M. S. Flegel, C. L. Heinbockel, J. B. Horner, J. E. Fair, L. M. Kegelmeyer, E. S. Koh, M. A. Johnson, W. L. Maranville, J. S. Meyer, R. Montesanti, J. Nguyen, J. E. Ralph, J. L. Reynolds, J. G. Senecal
Fusion Science and Technology | Volume 63 | Number 2 | March-April 2013 | Pages 151-159
Technical Paper | Selected papers from 20th Target Fabrication Meeting, May 20-24, 2012, Santa Fe, NM, Guest Editor: Robert C. Cook | doi.org/10.13182/FST13-TFM20-38
Articles are hosted by Taylor and Francis Online.
Capsule ablators are precision hollow spheres used in inertial confinement fusion targets used in high-peak-power laser systems such as the National Ignition Facility. These capsules have high surface-quality requirements, and hence a full surface microscopic mapping system has been developed to characterize them. The capsule-fill-tube-assembly mapping system combines a confocal surface-profiling microscope with a nine-axis, high-precision stage system to provide quantitative three-dimensional data over the entire surface of each capsule prior to assembly into the final target. The system measures the individual volumes of features on the capsule surface that are 7.5 m3 and larger with an accuracy of ±10%. The positional accuracy is better than 0.25 deg (1), or [approximately]5 m linearly. The data acquisition and image processing are all highly automated in order to keep pace with throughput demands. The system consists of four primary subsystems: the positioning system, the confocal microscope, the automated acquisition code, and the image processing and data management software.