ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Fermilab center renamed after late particle physicist Helen Edwards
Fermi National Accelerator Laboratory’s Integrated Engineering Research Center, which officially opened in January 2024, is now known as the Helen Edwards Engineering Center. The name was changed to honor the late particle physicist who led the design, construction, commissioning, and operation of the lab’s Tevatron accelerator and was part of the Water Resources Development Act signed by President Biden in December 2024, according to a Fermilab press release.
N. A. Antipa, S. H. Baxamusa, E. S. Buice, A. D. Conder, M. N. Emerich, M. S. Flegel, C. L. Heinbockel, J. B. Horner, J. E. Fair, L. M. Kegelmeyer, E. S. Koh, M. A. Johnson, W. L. Maranville, J. S. Meyer, R. Montesanti, J. Nguyen, J. E. Ralph, J. L. Reynolds, J. G. Senecal
Fusion Science and Technology | Volume 63 | Number 2 | March-April 2013 | Pages 151-159
Technical Paper | Selected papers from 20th Target Fabrication Meeting, May 20-24, 2012, Santa Fe, NM, Guest Editor: Robert C. Cook | doi.org/10.13182/FST13-TFM20-38
Articles are hosted by Taylor and Francis Online.
Capsule ablators are precision hollow spheres used in inertial confinement fusion targets used in high-peak-power laser systems such as the National Ignition Facility. These capsules have high surface-quality requirements, and hence a full surface microscopic mapping system has been developed to characterize them. The capsule-fill-tube-assembly mapping system combines a confocal surface-profiling microscope with a nine-axis, high-precision stage system to provide quantitative three-dimensional data over the entire surface of each capsule prior to assembly into the final target. The system measures the individual volumes of features on the capsule surface that are 7.5 m3 and larger with an accuracy of ±10%. The positional accuracy is better than 0.25 deg (1), or [approximately]5 m linearly. The data acquisition and image processing are all highly automated in order to keep pace with throughput demands. The system consists of four primary subsystems: the positioning system, the confocal microscope, the automated acquisition code, and the image processing and data management software.