ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Texas-based WCS chosen to manage U.S.-generated mercury
A five-year, $17.8 million contract has been awarded to Waste Control Specialists for the long-term management and storage of elemental mercury, the Department of Energy’s Office of Environmental Management announced on November 21.
M. Schoff, D. Steinman, A. Alberti, H. Huang, A. Nikroo
Fusion Science and Technology | Volume 63 | Number 2 | March-April 2013 | Pages 136-141
Technical Paper | Selected papers from 20th Target Fabrication Meeting, May 20-24, 2012, Santa Fe, NM, Guest Editor: Robert C. Cook | doi.org/10.13182/FST63-136
Articles are hosted by Taylor and Francis Online.
The atomic layer deposition technique generates very thin Al2O3 films to control the hydrogen diffusion half-life of glow discharge polymer (GDP) inertial confinement fusion shells. The films generated by this process have an easily controlled thickness and are pinhole free. As a result, they can be used to set the hydrogen diffusion half-life of a GDP shell to the required value of hours, from an uncoated value of minutes. Such diffusivity control is much harder to achieve with the currently used sputtered Al coating, which also renders the shell opaque, causing difficulties with ice-layer characterization. The [approximately]10-nm oxide is also less intrusive to target performance than an [approximately]100-nm (and highly nonuniform) metal coating such that it can be safely ignored by the target designer.