ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
M. Schoff, D. Steinman, A. Alberti, H. Huang, A. Nikroo
Fusion Science and Technology | Volume 63 | Number 2 | March-April 2013 | Pages 136-141
Technical Paper | Selected papers from 20th Target Fabrication Meeting, May 20-24, 2012, Santa Fe, NM, Guest Editor: Robert C. Cook | doi.org/10.13182/FST63-136
Articles are hosted by Taylor and Francis Online.
The atomic layer deposition technique generates very thin Al2O3 films to control the hydrogen diffusion half-life of glow discharge polymer (GDP) inertial confinement fusion shells. The films generated by this process have an easily controlled thickness and are pinhole free. As a result, they can be used to set the hydrogen diffusion half-life of a GDP shell to the required value of hours, from an uncoated value of minutes. Such diffusivity control is much harder to achieve with the currently used sputtered Al coating, which also renders the shell opaque, causing difficulties with ice-layer characterization. The [approximately]10-nm oxide is also less intrusive to target performance than an [approximately]100-nm (and highly nonuniform) metal coating such that it can be safely ignored by the target designer.