ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Disa seeks NRC license for its uranium mine waste remediation tech
The Nuclear Regulatory Commission has received a license application from Disa Technologies to use high-pressure slurry ablation (HPSA) technology for remediating abandoned uranium mine waste at inactive mining sites. Disa’s headquartersin are Casper, Wyo.
S. Le Tacon, F. Durut, C. Chicanne, V. Brunet
Fusion Science and Technology | Volume 63 | Number 2 | March-April 2013 | Pages 132-135
Technical Paper | Selected papers from 20th Target Fabrication Meeting, May 20-24, 2012, Santa Fe, NM, Guest Editor: Robert C. Cook | doi.org/10.13182/FST13-A16330
Articles are hosted by Taylor and Francis Online.
Glass thin films appear particularly interesting as semipermeable barriers for many noncryogenic target applications. This functional layer can be sputtered from quartz targets onto CHx microshells synthesized by glow discharge polymerization. In the present work, we investigate the influence of deposit parameters (pressure, RF power, target-holder distance, and plasma composition) on glass coating microstructure and permeation properties. The permeation properties of CHx/SiO2/CHx capsules are studied by mass spectrometry using deuterium (D2) as the filling gas. The use of a low deposition pressure and a high RF power in a background atmosphere of argon appears essential to obtain the most efficient barrier. The optimized sputtering conditions allow deuterium half-lives of 1 month on 1700-m CHx capsules, including a 1-m-thick SiO2 coating (corresponding to a permeation coefficient of 3 × 10-20 molm-1s-1Pa-1). These capsules could be filled to the required pressures ([approximately]3 MPa) for Laser Mégajoule (LMJ) experiments.