ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
W. T. Shmayda, D. R. Harding, V. A. Versteeg, C. Kingsley, M. Hallgren, S. J. Loucks
Fusion Science and Technology | Volume 63 | Number 2 | March-April 2013 | Pages 87-94
Technical Paper | Selected papers from 20th Target Fabrication Meeting, May 20-24, 2012, Santa Fe, NM, Guest Editor: Robert C. Cook | doi.org/10.13182/FST13-A16325
Articles are hosted by Taylor and Francis Online.
Debris with footprints smaller than 40 m2 on the outer and inner surfaces with heights of <10 m on outer surfaces and [approximately]1 m on inner surfaces is present on cryogenic targets used for inertial confinement fusion studies on OMEGA. These features form during the gas-filling and cooling processes used to produce cryogenic deuterium (D2) and deuterium-tritium (DT) targets. The amount of debris on the surface has varied since the inception of the Laboratory for Laser Energetics' (LLE's) cryogenic program. The cause of the contamination is attributed to the cryogenic equipment high-vacuum and cleanliness limitations and to the radiolytic degradation of polymers. Empirical observations and a review of the processing conditions suggest that 1 mol of condensable contaminant is sufficient to account for the debris observed on a typical cryogenic target. This translates into a 3-ppm impurity content in the DT fuel.This paper focuses on condensed gases as one source of debris. It is postulated that methane, water, and nitrogen accompany the DT fuel transfer when it is transferred from the uranium storage beds that hold the DT fuel to the permeation cell where the targets are filled.