ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
State legislation: Colorado redefines nuclear as “clean energy resource”
Colorado Gov. Jared Polis signed a bill into law on Monday that adds nuclear to the state’s clean energy portfolio—making nuclear power eligible for new sources of project financing at the state, county, and city levels.
S. W. Haan, J. Atherton, D. S. Clark, B. A. Hammel, D. A. Callahan, C. J. Cerjan, E. L. Dewald, S. Dixit, M. J. Edwards, S. Glenzer, S. P. Hatchett, D. Hicks, O. S. Jones, O. L. Landen, J. D. Lindl, M. M. Marinak, B. J. Macgowan, A. J. Mackinnon, N. B. Meezan, J. L. Milovich, D. H. Munro, H. F. Robey, J. D. Salmonson, B. K. Spears, L. J. Suter, R. P. Town, S. V. Weber, J. L. Kline, D. C. Wilson
Fusion Science and Technology | Volume 63 | Number 2 | March-April 2013 | Pages 67-75
Technical Paper | Selected papers from 20th Target Fabrication Meeting, May 20-24, 2012, Santa Fe, NM, Guest Editor: Robert C. Cook | doi.org/10.13182/FST13-TFM20-31
Articles are hosted by Taylor and Francis Online.
The National Ignition Campaign (NIC) on the National Ignition Facility plans to use an indirectly driven spherical implosion to assemble and ignite a mass of D-T fuel. The NIC is currently in the process of conducting a variety of experiments using surrogate targets, meant to define various aspects of the future ignition experiment. Four platforms have been developed: Re-emit targets measure the symmetry of the early part of the pulse, keyhole targets measure the strength and time of shocks, symcap targets measure integrated performance and implosion symmetry, and ConA targets measure implosion velocity and ablator performance. Also, cryogenic layered capsules similar to the ignition design, containing a layer of either D-T or hydrodynamically equivalent tritium-rich fuel, are being fielded. These integrate the laser and target adjustments made during the tuning experiments and test the integrated performance with data on RhoR, temperature, yield, and other diagnostics. In an activity ongoing with these experiments, the point design for ignition is updated and modified as appropriate. This paper summarizes the target designs that are being used for the campaign, the results of the experimental campaign to date, and how the campaign has affected requirements for the eventual ignition experiment.