ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Fermilab center renamed after late particle physicist Helen Edwards
Fermi National Accelerator Laboratory’s Integrated Engineering Research Center, which officially opened in January 2024, is now known as the Helen Edwards Engineering Center. The name was changed to honor the late particle physicist who led the design, construction, commissioning, and operation of the lab’s Tevatron accelerator and was part of the Water Resources Development Act signed by President Biden in December 2024, according to a Fermilab press release.
Yoshi Hirooka
Fusion Science and Technology | Volume 52 | Number 4 | November 2007 | Pages 1040-1044
Technical Paper | Plasma Engineering and Diagnostics | doi.org/10.13182/FST07-A1632
Articles are hosted by Taylor and Francis Online.
For the successful steady state operation of deuterium-tritium (DT) fusion reactors, helium (He) ash needs to be removed continuously from the burning core, along with unburned hydrogenic fuel particles, to sustain the power generation. This will require enormous particle pumping capabilities despite the fact that helium is the most difficult gas to be pumped by means of cryogenic condensation. In the present work, zero-dimensional, four-reservoir (core-plasma, SOL-plasma, gas-phase, and wall material) global particle balance modeling has been conducted for both DT-fuel and He-ash particles. Modeling results indicate that, for the density control of He-ash particles in the burning core, passive wall pumping via codeposition with eroded plasma-facing materials would definitely be necessary to compensate for the lack of pumping speed provided by conventional vacuum equipment. Recent experimental data on helium codeposition with lithium have been used as input for modeling and results indicate that lithium-gettered moving-surface plasma-facing components can meet the He-ash pumping requirements.