ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
A wave of new U.S.-U.K. deals ahead of Trump’s state visit
President Trump will arrive in the United Kingdom this week for a state visit that promises to include the usual pomp and ceremony alongside the signing of a landmark new agreement on U.S.-U.K. nuclear collaboration.
Yoshi Hirooka
Fusion Science and Technology | Volume 52 | Number 4 | November 2007 | Pages 1040-1044
Technical Paper | Plasma Engineering and Diagnostics | doi.org/10.13182/FST07-A1632
Articles are hosted by Taylor and Francis Online.
For the successful steady state operation of deuterium-tritium (DT) fusion reactors, helium (He) ash needs to be removed continuously from the burning core, along with unburned hydrogenic fuel particles, to sustain the power generation. This will require enormous particle pumping capabilities despite the fact that helium is the most difficult gas to be pumped by means of cryogenic condensation. In the present work, zero-dimensional, four-reservoir (core-plasma, SOL-plasma, gas-phase, and wall material) global particle balance modeling has been conducted for both DT-fuel and He-ash particles. Modeling results indicate that, for the density control of He-ash particles in the burning core, passive wall pumping via codeposition with eroded plasma-facing materials would definitely be necessary to compensate for the lack of pumping speed provided by conventional vacuum equipment. Recent experimental data on helium codeposition with lithium have been used as input for modeling and results indicate that lithium-gettered moving-surface plasma-facing components can meet the He-ash pumping requirements.