ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Viatcheslav V. Anisimov, Emanuela Cavalleri, Fedor I. Karmanov, Victor I. Slobodtchouk, Lioudmila N. Latysheva, Igor A. Pshenichnov, Marcello Vecchi
Fusion Science and Technology | Volume 39 | Number 2 | March 2001 | Pages 219-227
Technical Paper | doi.org/10.13182/FST01-A163
Articles are hosted by Taylor and Francis Online.
Design calculations of thermohydraulic parameters of the secondary target of the intense neutron source (INS) based on muon-catalyzed fusion (CF) (the CF-INS) are presented for a liquid deuterium-tritium (D-T) mixture. The synthesizer is connected to an external cooler by input and output pipelines. The optimal mixture composition, synthesizer layout, and dimensions are determined. The possibility of creating a D-T mixture flow with a quasi-uniform velocity distribution is demonstrated. Possible vortexes were found to be eliminated by installation of corresponding hydraulic resistance in the shape of a spherical shell segment. At the CF-INS operation with its design parameters [neutron flux as high as 1014 n/(cm2s)], the total heat deposit in the D-T mixture due to fusion and charged-particle ionization losses is estimated at ~117 kW. However, even at such conditions, with the appropriate synthesizer geometry and mass flow rate, the mixture temperature does not exceed the boiling point in any part of the synthesizer.