ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Viatcheslav V. Anisimov, Emanuela Cavalleri, Fedor I. Karmanov, Victor I. Slobodtchouk, Lioudmila N. Latysheva, Igor A. Pshenichnov, Marcello Vecchi
Fusion Science and Technology | Volume 39 | Number 2 | March 2001 | Pages 219-227
Technical Paper | doi.org/10.13182/FST01-A163
Articles are hosted by Taylor and Francis Online.
Design calculations of thermohydraulic parameters of the secondary target of the intense neutron source (INS) based on muon-catalyzed fusion (CF) (the CF-INS) are presented for a liquid deuterium-tritium (D-T) mixture. The synthesizer is connected to an external cooler by input and output pipelines. The optimal mixture composition, synthesizer layout, and dimensions are determined. The possibility of creating a D-T mixture flow with a quasi-uniform velocity distribution is demonstrated. Possible vortexes were found to be eliminated by installation of corresponding hydraulic resistance in the shape of a spherical shell segment. At the CF-INS operation with its design parameters [neutron flux as high as 1014 n/(cm2s)], the total heat deposit in the D-T mixture due to fusion and charged-particle ionization losses is estimated at ~117 kW. However, even at such conditions, with the appropriate synthesizer geometry and mass flow rate, the mixture temperature does not exceed the boiling point in any part of the synthesizer.