ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
H. Nakamura, K. Kobayashi, T. Yamanishi, S. Yokoyama, S. Saito, K. Kikuchi
Fusion Science and Technology | Volume 52 | Number 4 | November 2007 | Pages 1012-1016
Technical Paper | Tritium, Safety, and Environment | doi.org/10.13182/FST07-A1627
Articles are hosted by Taylor and Francis Online.
Thermal desorption behavior of tritium has been investigated for SS316 and F82H irradiated by 580MeV proton (SINQ-target3) up to 5.0 ~5.9 dpa and 6.3~9.1 dpa, respectively, in order to understand tritium transport in the irradiated materials. While the tritium release has only one peak at 670 K from irradiated SS316, that has two peaks at 510 K and 670 K from irradiated F82H. Those results indicate that only one kind of trap site exists in the SS316, and at least two kinds of trap site exist in F82H. As the results of tritium transport analysis of tritium release behavior, it was found that the trap site at 670 K for SS316 and F82H could be controlled by the same trap mechanism. As to the chemical form of tritium released from the steels, 1/2 and 1/3 of tritium was release as water vapor form from SS316 and F82H, respectively. It could be attributed to the growth of surface oxide on the metal surfaces during the TDS.