ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Kenji Kotoh, Kazuhiko Kudo
Fusion Science and Technology | Volume 52 | Number 4 | November 2007 | Pages 995-1001
Technical Paper | Tritium, Safety, and Environment | doi.org/10.13182/FST07-A1624
Articles are hosted by Taylor and Francis Online.
Although the method of adsorption using synthetic zeolites has been applied to the systems of removal or/and recovery of tritiated water vapor from tritium handling atmospheres or process gases, the dynamic behavior of hydrogen-isotopic water molecules in zeolites is not yet sufficiently elucidated because the interaction between strongly polarized water molecules and zeolite crystalline surfaces is complicated. Considering the basic definition of mass transfer with the chemical potential gradient as driving force for diffusion, we obtained an expression of diffusivity depending on temperature and concentration, derived from the characteristics of adsorption equilibrium as a function of adsorption potential, where the diffusivity is described in relation to the mobility corrected here by deriving a term of activation energy.Experimental diffusion coefficients for tracer HTO in H2O adsorbed in zeolite crystals, measured under various conditions of temperature and vapor pressure, indicate a variety of values. The variety, however, can be clearly interpreted in accordance with this expression.