ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
Kenji Kotoh, Kazuhiko Kudo
Fusion Science and Technology | Volume 52 | Number 4 | November 2007 | Pages 995-1001
Technical Paper | Tritium, Safety, and Environment | doi.org/10.13182/FST07-A1624
Articles are hosted by Taylor and Francis Online.
Although the method of adsorption using synthetic zeolites has been applied to the systems of removal or/and recovery of tritiated water vapor from tritium handling atmospheres or process gases, the dynamic behavior of hydrogen-isotopic water molecules in zeolites is not yet sufficiently elucidated because the interaction between strongly polarized water molecules and zeolite crystalline surfaces is complicated. Considering the basic definition of mass transfer with the chemical potential gradient as driving force for diffusion, we obtained an expression of diffusivity depending on temperature and concentration, derived from the characteristics of adsorption equilibrium as a function of adsorption potential, where the diffusivity is described in relation to the mobility corrected here by deriving a term of activation energy.Experimental diffusion coefficients for tracer HTO in H2O adsorbed in zeolite crystals, measured under various conditions of temperature and vapor pressure, indicate a variety of values. The variety, however, can be clearly interpreted in accordance with this expression.