ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
C. J. Martin, L. A. El-Guebaly
Fusion Science and Technology | Volume 52 | Number 4 | November 2007 | Pages 985-989
Technical Paper | Tritium, Safety, and Environment | doi.org/10.13182/FST07-A1622
Articles are hosted by Taylor and Francis Online.
Loss of Coolant Accident (LOCA) and Loss of Flow Accident (LOFA) thermal simulations have been performed for the ARIES compact stellarator fusion power plant. The ARIES-CS design uses three separate coolant loops: lithium-lead (LiPb) in the blanket, helium in the blanket and the shield, and water in the vacuum vessel. The thermal response to LOCA/LOFA conditions was simulated using transient axisymmetric finite element models. In these analyses, the plasma was quenched three seconds after coolant loss, and the temperature of the chamber components subsequently increased due to the generated decay heat. Thermal simulations determined the maximum temperatures reached in the various components were below the 740°C temperature limit for the reusability of the ferritic steel structure.