ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
L. Schmitz, Y. Tajima, A. Ying, P. Calderoni
Fusion Science and Technology | Volume 52 | Number 4 | November 2007 | Pages 963-968
Technical Paper | Inertial Fusion Technology: Drivers and Advanced Designs | doi.org/10.13182/FST07-A1619
Articles are hosted by Taylor and Francis Online.
The Z-pinch driven fusion reactor will require extremely high current pulses to generate sufficient x-ray flux for the fusion target implosion. The fusion target is coupled to the pulsed power system through a recyclable transmission line (RTL) that is presently envisioned made of carbon steel. The energy released by the fusion pulse is absorbed by liquid flibe (Li2BeF4) coolant and by the RTL material which is partially vaporized and ionized. The objective of this paper is to characterize the recombination of vaporized metal halides in the presence of ferritic steel in a plasma with parameters similar to those expected in the Z-IFE chamber (plasma density < 2 × 1018 cm-3, Te < 40000 K). Using a substitute eutectic salt (Na2MgCl4) instead of flibe, we find experimentally that the three-body recombination rate of iron with chlorine is larger than that of sodium with chlorine. The measured recombination rates are compared to equilibrium recombination rates calculated at lower temperature (5000 K). The results suggest that an effective scheme for the removal of ferritic fluorite from the liquid flibe coolant may be needed in a Z-IFE reactor in addition to the mechanical separation of carbon steel RTL material required for recycling.