ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Jason Oakley, Mark Anderson, Ed Marriott, Jesse Gudmundson, Kumar Sridharan, Virginia Vigil, Gary Rochau, Riccardo Bonazza
Fusion Science and Technology | Volume 52 | Number 4 | November 2007 | Pages 943-947
Technical Paper | Inertial Fusion Technology: Drivers and Advanced Designs | doi.org/10.13182/FST07-A1615
Articles are hosted by Taylor and Francis Online.
A liquid pool, with and without void fractions, was subjected to dynamic compression testing in a vertical shock tube to model the bubbly-pool concept being considered for use in an inertial fusion energy reactor. Water and oil were used to model the FliBe coolant that collects at the bottom of the chamber and serves as first wall protection at that location. The experiments (shock strengths M = 1.4, 2.0, and 3.1) were conducted in atmospheric pressure argon, and argon was bubbled through the liquid to achieve void fractions of 5-15% in the 30.4 cm deep pool. Pressure measurements were taken in the pool at intervals of 2.54 cm to measure the effect of void fraction on the pool compression and the compression wave traveling through the liquid. The presence of the gas voids in the liquid had a strong effect on the dynamic pressure loading but did not reduce the shock impulse significantly at the low and intermediate Mach numbers, but did exhibit a mitigating effect at the higher shock strength. A very high void fraction foam was also studied that resulted in a 22% reduction of the shock wave impulse.