ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
NRC approves V.C. Summer’s second license renewal
Dominion Energy’s V.C. Summer nuclear power plant, in Jenkinsville, S.C., has been authorized to operate for 80 years, until August 2062, following the renewal of its operating license by the Nuclear Regulatory Commission for a second time.
Jason Oakley, Mark Anderson, Ed Marriott, Jesse Gudmundson, Kumar Sridharan, Virginia Vigil, Gary Rochau, Riccardo Bonazza
Fusion Science and Technology | Volume 52 | Number 4 | November 2007 | Pages 943-947
Technical Paper | Inertial Fusion Technology: Drivers and Advanced Designs | doi.org/10.13182/FST07-A1615
Articles are hosted by Taylor and Francis Online.
A liquid pool, with and without void fractions, was subjected to dynamic compression testing in a vertical shock tube to model the bubbly-pool concept being considered for use in an inertial fusion energy reactor. Water and oil were used to model the FliBe coolant that collects at the bottom of the chamber and serves as first wall protection at that location. The experiments (shock strengths M = 1.4, 2.0, and 3.1) were conducted in atmospheric pressure argon, and argon was bubbled through the liquid to achieve void fractions of 5-15% in the 30.4 cm deep pool. Pressure measurements were taken in the pool at intervals of 2.54 cm to measure the effect of void fraction on the pool compression and the compression wave traveling through the liquid. The presence of the gas voids in the liquid had a strong effect on the dynamic pressure loading but did not reduce the shock impulse significantly at the low and intermediate Mach numbers, but did exhibit a mitigating effect at the higher shock strength. A very high void fraction foam was also studied that resulted in a 22% reduction of the shock wave impulse.