ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
A more open future for nuclear research
A growing number of institutional, national, and funder mandates are requiring researchers to make their published work immediately publicly accessible, through either open repositories or open access (OA) publications. In addition, both private and public funders are developing policies, such as those from the Office of Science and Technology Policy and the European Commission, that ask researchers to make publicly available at the time of publication as much of their underlying data and other materials as possible. These, combined with movement in the scientific community toward embracing open science principles (seen, for example, in the dramatic rise of preprint servers like arXiv), demonstrate a need for a different kind of publishing outlet.
T. A. Heltemes, G. A. Moses
Fusion Science and Technology | Volume 52 | Number 4 | November 2007 | Pages 927-931
Technical Paper | Inertial Fusion Technology: Drivers and Advanced Designs | doi.org/10.13182/FST07-A1612
Articles are hosted by Taylor and Francis Online.
The introduction of magnetic cusp fields into the High Average Power Laser (HAPL) reactor design is to prevent target ions from interacting with the armor layer. Diverting the ions and preventing their impact on the chamber armor eases thermal design constraints considerably. The BUCKY code was used to simulate thermal loads for the candidate armor materials tungsten and silicon carbide.Parametric analysis was done to ascertain the peak temperature rise in the armor due to X-rays from the HAPL target thermonuclear ignition. Temperature values as a function of chamber armor radius were obtained using initial conditions of T0 = 600 °C and xenon buffer gas pressures of 66.7, 666.7 and 6666.1 mPa (0.5, 5 and 50 mTorr). The armor radius was decreased until thermal thresholds were met (2400 °C and 1000 °C for tungsten and silicon carbide, respectively) to determine the minimum allowable radius of the HAPL chamber.A second set of parametric simulations were performed at xenon gas initial pressures of 666.7 and 6666.1 mPa (5 and 50 mTorr) and temperature of 600°C to a time of 5 ms to observe the effect of re-radiation from the buffer gas on the surface temperature of tungsten and silicon carbide.