ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
T. A. Heltemes, G. A. Moses
Fusion Science and Technology | Volume 52 | Number 4 | November 2007 | Pages 927-931
Technical Paper | Inertial Fusion Technology: Drivers and Advanced Designs | doi.org/10.13182/FST07-A1612
Articles are hosted by Taylor and Francis Online.
The introduction of magnetic cusp fields into the High Average Power Laser (HAPL) reactor design is to prevent target ions from interacting with the armor layer. Diverting the ions and preventing their impact on the chamber armor eases thermal design constraints considerably. The BUCKY code was used to simulate thermal loads for the candidate armor materials tungsten and silicon carbide.Parametric analysis was done to ascertain the peak temperature rise in the armor due to X-rays from the HAPL target thermonuclear ignition. Temperature values as a function of chamber armor radius were obtained using initial conditions of T0 = 600 °C and xenon buffer gas pressures of 66.7, 666.7 and 6666.1 mPa (0.5, 5 and 50 mTorr). The armor radius was decreased until thermal thresholds were met (2400 °C and 1000 °C for tungsten and silicon carbide, respectively) to determine the minimum allowable radius of the HAPL chamber.A second set of parametric simulations were performed at xenon gas initial pressures of 666.7 and 6666.1 mPa (5 and 50 mTorr) and temperature of 600°C to a time of 5 ms to observe the effect of re-radiation from the buffer gas on the surface temperature of tungsten and silicon carbide.