ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
J. W. Schumer, P. F. Ottinger, C. L. Olson
Fusion Science and Technology | Volume 52 | Number 4 | November 2007 | Pages 901-905
Technical Paper | Inertial Fusion Technology: Drivers and Advanced Designs | doi.org/10.13182/FST07-A1607
Articles are hosted by Taylor and Francis Online.
A recyclable transmission line (RTL) carries power from the pulsed-power driver to the fusion target in a z-pinch-driven inertial-confinement fusion energy (IFE) system. In order to minimize the driver voltage, the RTL inductance must be small, requiring a short, low-impedance, magnetically insulated transmission line (MITL). However, the large linear current density that flows in the electrodes at small radius near the load resistively heats the anode surface, leading to anode plasma formation and ion emission. If the impedance of the RTL is too small, large ion current losses can occur and large electron flow currents can be launched into the z-pinch load region. These problems are avoided by choosing the line impedance at the load end of the RTL to be well above the effective impedance of the imploding load. By gradually reducing the impedance along the line moving from the load to the driver, the RTL inductance can be controlled. But, if the impedance is varied too rapidly along the line, significant electron flow current losses can occur. The impact of these constraints on the RTL design of an IFE system is discussed and a compromise design with reasonable power coupling efficiency is established.