ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
A. Yoshikawa, Y. Oya, H. Miyauchi, T. Nakahata, Y. Nishikawa, T. Suda, E. Igarashi, M. Oyaidzu, M. Tokitani, H. Iwakiri, N. Yoshida, K. Okuno
Fusion Science and Technology | Volume 52 | Number 4 | November 2007 | Pages 870-874
Technical Paper | First Wall, Blanket, and Shield | doi.org/10.13182/FST07-A1602
Articles are hosted by Taylor and Francis Online.
He+ implantation effects on the Retention behavior of hydrogen isotopes implanted into 35% oxygen-contained boron film was studied by means of SEM, AFM, XPS and TDS. It was found that the D retention for only D2+ implanted film was the highest and it decreased for pre-He+ implanted film and post-He+ implanted film. From the SEM and AFM images, the surface morphology of the oxygen-contained boron film was partly cracked, indicating that B2O3 was formed in the film. From the TDS and XPS results, the defective structure and the formation of B-D-B bond, B-D bond and B-O-D bond were observed by He+ and D2+ implantation, respectively. It was suggested that oxygen was trapped as B-O bond. The reaction with implanted D2+ was preceded in different mechanism.