ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
A. Yoshikawa, Y. Oya, H. Miyauchi, T. Nakahata, Y. Nishikawa, T. Suda, E. Igarashi, M. Oyaidzu, M. Tokitani, H. Iwakiri, N. Yoshida, K. Okuno
Fusion Science and Technology | Volume 52 | Number 4 | November 2007 | Pages 870-874
Technical Paper | First Wall, Blanket, and Shield | doi.org/10.13182/FST07-A1602
Articles are hosted by Taylor and Francis Online.
He+ implantation effects on the Retention behavior of hydrogen isotopes implanted into 35% oxygen-contained boron film was studied by means of SEM, AFM, XPS and TDS. It was found that the D retention for only D2+ implanted film was the highest and it decreased for pre-He+ implanted film and post-He+ implanted film. From the SEM and AFM images, the surface morphology of the oxygen-contained boron film was partly cracked, indicating that B2O3 was formed in the film. From the TDS and XPS results, the defective structure and the formation of B-D-B bond, B-D bond and B-O-D bond were observed by He+ and D2+ implantation, respectively. It was suggested that oxygen was trapped as B-O bond. The reaction with implanted D2+ was preceded in different mechanism.