ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Peter Jung
Fusion Science and Technology | Volume 33 | Number 1 | January 1998 | Pages 63-67
Technical Paper | doi.org/10.13182/FST98-A16
Articles are hosted by Taylor and Francis Online.
Hydrogen is considered one of the major problems for ferritic and martensitic steel structures in future fusion reactors. In contrast to hydrogen from other sources, hydrogen produced by nuclear transmutations cannot be kept away by barriers but must be drained off through the surfaces. An upper limit of the diffusion distance is derived at which the stationary concentration of hydrogen stays below the critical concentration for hydrogen embrittlement. In addition a lower limit for the effusion time is given that is needed to reduce the hydrogen concentration below a certain level during shutdown periods. Similar considerations are applied to the target of a planned spallation neutron source.