ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Peter Jung
Fusion Science and Technology | Volume 33 | Number 1 | January 1998 | Pages 63-67
Technical Paper | doi.org/10.13182/FST98-A16
Articles are hosted by Taylor and Francis Online.
Hydrogen is considered one of the major problems for ferritic and martensitic steel structures in future fusion reactors. In contrast to hydrogen from other sources, hydrogen produced by nuclear transmutations cannot be kept away by barriers but must be drained off through the surfaces. An upper limit of the diffusion distance is derived at which the stationary concentration of hydrogen stays below the critical concentration for hydrogen embrittlement. In addition a lower limit for the effusion time is given that is needed to reduce the hydrogen concentration below a certain level during shutdown periods. Similar considerations are applied to the target of a planned spallation neutron source.