ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Dong Won Lee, Bong Geun Hong, Yonghee Kim, Wang Ki In, Kyung Ho Yoon
Fusion Science and Technology | Volume 52 | Number 4 | November 2007 | Pages 844-848
Technical Paper | First Wall, Blanket, and Shield | doi.org/10.13182/FST07-A1597
Articles are hosted by Taylor and Francis Online.
Through a consideration of the requirements for a DEMO-relevant blanket concept, Korea (KO) has proposed a He Cooled Molten Lithium (HCML) blanket with Ferritic Steel (FS) as a structural material in the International Thermonuclear Experimental Reactor (ITER) program. The design and WKH performance of the KO HCML Test Blanket Module (TBM) are introduced in this paper. It uses He as a coolant at an inlet temperature of 300°C and an outlet temperature up to 406°C and Li is used as a tritium breeder by considering its potential advantages. Two layers of graphite are inserted as a reflector in the breeder zone to increase the Tritium Breeding Ratio (TBR) and the shielding performances. A 3-D Monte Carlo analysis is performed with the MCCARD code for the neutronics and the total TBM power is designed to be 0.675 MW at a normal heat flux from the plasma side. From the analysis results with CFX-10 for the thermal-hydraulics, the He cooling path is determined and it shows that the maximum temperature of the first wall does not exceed 550 °C at the structural materials and the coolant velocities are 50 m/sec and 25~32 m/sec at the first wall and breeding zone, respectively. The obtained temperature data is used in the thermal-mechanical analysis with ANSYS-10. The maximum von Mises equivalent stress of the first wall is 2540 MPa and the maximum deformation of it is 1.3 mm.