ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Masaaki Satake, Kazuhisa Yuki, Hidetoshi Hashizume
Fusion Science and Technology | Volume 52 | Number 4 | November 2007 | Pages 821-826
Technical Paper | Nuclear Analysis and Experiments | doi.org/10.13182/FST07-A1593
Articles are hosted by Taylor and Francis Online.
In a liquid blanket system, MHD effect or low heat-transfer property of high Prandtl number fluid makes it difficult to remove high heat load, therefore utilization of ducts with inserted rods or sphere-packed pipes has been proposed to enhance the heat transfer. It is important to reveal influence of arrangement of the rods or spheres upon the heat transfer characteristics. In this study, the influence of a distance between two rods in wall-normal and streamwise directions upon the flow structures is clarified by numerical simulation. When the rod is approaching to another rod in the wall-normal direction, Karman's vortex street is disrupted. On the other hand, the distance between the rod and the wall is shorter than a certain value, a separation occurs on the wall and then the separation position does not move when the distance is much smaller than that value. Moreover, the pressure drop depends on the distance between two rods, and then there exists the minimum pressure drop. When the distance between the two rods becomes shorter in the streamwise direction, the wake behind the upstream rod changes from Karman's vortex street to twin vortexes and the pressure drop decreases. The turbulent kinetic energy near the wall in case of Karman's vortex street, which is generated by the upstream rod, is higher than that in case of twin vortex.