ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
M. J. Pattison, K. N. Premnath, N. B. Morley
Fusion Science and Technology | Volume 52 | Number 4 | November 2007 | Pages 812-816
Technical Paper | Nuclear Analysis and Experiments | doi.org/10.13182/FST07-A1591
Articles are hosted by Taylor and Francis Online.
Fusion reactors designs frequently involve the use of liquid metal flows in the presence of strong magnetic fields. Simulation of the flows involves the solution of continuum equations for fluid flow and magnetic induction, usually done with finite difference methods. In this paper, an alternative method, based on the generalized lattice Boltzmann equation (GLBE), and implemented in the MetaFlow code is discussed. It has a number of desirable features, including fast execution, excellent parallel scalability, and can easily handle complex geometries. The use of the recent GLBE variant greatly enhances stability and accuracy. To simulate magnetohydrodynamic (MHD) flows relevant to fusion applications using GLBE, several new models have been developed, including new boundary condition formulations, preconditioners for faster steady-state convergence, variable electrical conductivity materials, and to resolve thin Hartmann layers. These models are discussed, and validations against MHD benchmarks, including 3-D driven cavity, high Hartmann number and turbulent cases are presented.