ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
M. J. Pattison, K. N. Premnath, N. B. Morley
Fusion Science and Technology | Volume 52 | Number 4 | November 2007 | Pages 812-816
Technical Paper | Nuclear Analysis and Experiments | doi.org/10.13182/FST07-A1591
Articles are hosted by Taylor and Francis Online.
Fusion reactors designs frequently involve the use of liquid metal flows in the presence of strong magnetic fields. Simulation of the flows involves the solution of continuum equations for fluid flow and magnetic induction, usually done with finite difference methods. In this paper, an alternative method, based on the generalized lattice Boltzmann equation (GLBE), and implemented in the MetaFlow code is discussed. It has a number of desirable features, including fast execution, excellent parallel scalability, and can easily handle complex geometries. The use of the recent GLBE variant greatly enhances stability and accuracy. To simulate magnetohydrodynamic (MHD) flows relevant to fusion applications using GLBE, several new models have been developed, including new boundary condition formulations, preconditioners for faster steady-state convergence, variable electrical conductivity materials, and to resolve thin Hartmann layers. These models are discussed, and validations against MHD benchmarks, including 3-D driven cavity, high Hartmann number and turbulent cases are presented.