ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Fermilab center renamed after late particle physicist Helen Edwards
Fermi National Accelerator Laboratory’s Integrated Engineering Research Center, which officially opened in January 2024, is now known as the Helen Edwards Engineering Center. The name was changed to honor the late particle physicist who led the design, construction, commissioning, and operation of the lab’s Tevatron accelerator and was part of the Water Resources Development Act signed by President Biden in December 2024, according to a Fermilab press release.
M. Z. Youssef, P. Batistoni, L. Patrizzi, T. Wareing, I. M. Davis
Fusion Science and Technology | Volume 52 | Number 4 | November 2007 | Pages 801-806
Technical Paper | Nuclear Analysis and Experiments | doi.org/10.13182/FST07-A1589
Articles are hosted by Taylor and Francis Online.
The calculation accuracy of the newly developed 3D discrete ordinates code, Attila, is benchmarked by comparing its prediction to the measured data in two mockups bombarded by 14 MeV neutron source of the FNG facility located at Frascati, Italy. The results are also compared to those based on MCNP Monte Carlo code for the same measured reactions. The experimental mock-ups simulate parts of ITER in-vessel components, namely, the tungsten (W) mockup and the ITER shielding blanket. The first mockup was used to validate W data as a material for plasma facing component. A streaming path was introduced in the second configuration. The objective of this paper is to benchmark Attila code to determine its adequacy for fusion application. Another objective is to compare results based on two distinctive 3D calculation tools using the same nuclear data, FENDL2.1, and the same response function (IRDF-90) for measured data. The results of these comparisons are reported in this paper.