ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Shinji Ebara, Hiroyuki Nakaharai, Takehiko Yokomine, Akihiko Shimizu
Fusion Science and Technology | Volume 52 | Number 4 | November 2007 | Pages 786-790
Technical Paper | Nuclear Analysis and Experiments | doi.org/10.13182/FST07-A1586
Articles are hosted by Taylor and Francis Online.
In the high flux test module of the International Fusion Materials Irradiation Facility, temperature control of irradiated specimens are done by gas cooling and electric heating. The width of cooling channels is supposed to be 1 mm in the module vessel which is a rectangular duct with wall thickness of 1 mm. Since there is large pressure difference up to several atmospheric pressure between the inside and outside the vessel, it is considered that the vessel wall and the cooling channels easily deforms. In order to estimate cooling performances for the coolant flowing in the deformed channel, we conduct a finite element analysis of turbulent heat transfer in a mildly curved channel using large-eddy simulation. It is found from the simulation that heat transfer on the concave wall drastically changes according to local change in flow aspect such as separation while that on the opposite flat wall is affected only by average flow velocity and is not largely changed by the channel deformation.