ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Shinji Ebara, Hiroyuki Nakaharai, Takehiko Yokomine, Akihiko Shimizu
Fusion Science and Technology | Volume 52 | Number 4 | November 2007 | Pages 786-790
Technical Paper | Nuclear Analysis and Experiments | doi.org/10.13182/FST07-A1586
Articles are hosted by Taylor and Francis Online.
In the high flux test module of the International Fusion Materials Irradiation Facility, temperature control of irradiated specimens are done by gas cooling and electric heating. The width of cooling channels is supposed to be 1 mm in the module vessel which is a rectangular duct with wall thickness of 1 mm. Since there is large pressure difference up to several atmospheric pressure between the inside and outside the vessel, it is considered that the vessel wall and the cooling channels easily deforms. In order to estimate cooling performances for the coolant flowing in the deformed channel, we conduct a finite element analysis of turbulent heat transfer in a mildly curved channel using large-eddy simulation. It is found from the simulation that heat transfer on the concave wall drastically changes according to local change in flow aspect such as separation while that on the opposite flat wall is affected only by average flow velocity and is not largely changed by the channel deformation.