ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
M. Yamauchi, T. Nishitani, S. Nishio, J. Hori, H. Kawasaki
Fusion Science and Technology | Volume 52 | Number 4 | November 2007 | Pages 781-785
Technical Paper | Nuclear Analysis and Experiments | doi.org/10.13182/FST07-A1585
Articles are hosted by Taylor and Francis Online.
Low activation material is one of the important factors for constructing high power fusion reactors in future. Unexpected activation, however, may be produced through sequential reactions due to charged particles created by primary neutron reactions. In the present work, the effect of the sequential activation reaction was studied for candidate low activation materials of a fusion demo-reactor. The calculations were conducted by the ACT4 code developed in JAEA for the activation analysis of fusion reactor designs and revised for dealing with the sequential activation reactions. The results say that the real dose rate around vanadium alloy becomes larger after the cooling for 3 years by considering the reaction. Although metal hydrate is regarded as an excellent low activation shield material, the reactions due to recoil protons are influential and the dose rate around vanadium hydrate is several orders of magnitude larger than the value calculated without the sequential process after 2 weeks cooling. In case of liquid breeders, the effect of sequential reactions is popularly observed and it affects the breeder reprocessing and the shield design of circulation loop.