ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
M. Yamauchi, T. Nishitani, S. Nishio, J. Hori, H. Kawasaki
Fusion Science and Technology | Volume 52 | Number 4 | November 2007 | Pages 781-785
Technical Paper | Nuclear Analysis and Experiments | doi.org/10.13182/FST07-A1585
Articles are hosted by Taylor and Francis Online.
Low activation material is one of the important factors for constructing high power fusion reactors in future. Unexpected activation, however, may be produced through sequential reactions due to charged particles created by primary neutron reactions. In the present work, the effect of the sequential activation reaction was studied for candidate low activation materials of a fusion demo-reactor. The calculations were conducted by the ACT4 code developed in JAEA for the activation analysis of fusion reactor designs and revised for dealing with the sequential activation reactions. The results say that the real dose rate around vanadium alloy becomes larger after the cooling for 3 years by considering the reaction. Although metal hydrate is regarded as an excellent low activation shield material, the reactions due to recoil protons are influential and the dose rate around vanadium hydrate is several orders of magnitude larger than the value calculated without the sequential process after 2 weeks cooling. In case of liquid breeders, the effect of sequential reactions is popularly observed and it affects the breeder reprocessing and the shield design of circulation loop.