ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
A. Klix, P. Batistoni, U. Fischer, H. Freiesleben, D. Leichtle, K. Seidel, S. Unholzer
Fusion Science and Technology | Volume 52 | Number 4 | November 2007 | Pages 776-780
Technical Paper | Nuclear Analysis and Experiments | doi.org/10.13182/FST07-A1584
Articles are hosted by Taylor and Francis Online.
A mock-up of the European Helium-Cooled Pebble Bed TBM was irradiated with DT neutrons in pulsed and continuous mode at the Fusion Neutronics Laboratory of the University of Technology Dresden. The aim was to measure fast neutron and gamma-ray flux spectra as well as time-of-arrival spectra of the slow neutron flux. The results of the experiments were analysed by the Monte Carlo code MCNP and nuclear data from the European Fusion File (EFF-3),and the Fusion Evaluated Nuclear Data Library (FENDL-2.0/2.1). It was found that the calculation of the fast neutron flux above 3 MeV tends to overestimate while the gamma-ray flux and slow neutron flux in two measurement positions in the mock-up was underestimated. The mock-up was also irradiated at FNG/ENEA Frascati to measure tritium breeding rates by means of small Li2CO3 pellet detectors inserted into the breeding layers. The breeding experiment was analysed at FZ Karlsruhe with emphasis on determining sensitivities of the TPR to relevant cross section uncertainties of all materials in the mock-up. It was found that the TPR calculation shows a tendency to underestimate. From the sensitivity analysis it was found that the total TPR is most sensitive to the elastic scattering in Be and the 7Li(n,T) reaction.