ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
A. Klix, P. Batistoni, U. Fischer, H. Freiesleben, D. Leichtle, K. Seidel, S. Unholzer
Fusion Science and Technology | Volume 52 | Number 4 | November 2007 | Pages 776-780
Technical Paper | Nuclear Analysis and Experiments | doi.org/10.13182/FST07-A1584
Articles are hosted by Taylor and Francis Online.
A mock-up of the European Helium-Cooled Pebble Bed TBM was irradiated with DT neutrons in pulsed and continuous mode at the Fusion Neutronics Laboratory of the University of Technology Dresden. The aim was to measure fast neutron and gamma-ray flux spectra as well as time-of-arrival spectra of the slow neutron flux. The results of the experiments were analysed by the Monte Carlo code MCNP and nuclear data from the European Fusion File (EFF-3),and the Fusion Evaluated Nuclear Data Library (FENDL-2.0/2.1). It was found that the calculation of the fast neutron flux above 3 MeV tends to overestimate while the gamma-ray flux and slow neutron flux in two measurement positions in the mock-up was underestimated. The mock-up was also irradiated at FNG/ENEA Frascati to measure tritium breeding rates by means of small Li2CO3 pellet detectors inserted into the breeding layers. The breeding experiment was analysed at FZ Karlsruhe with emphasis on determining sensitivities of the TPR to relevant cross section uncertainties of all materials in the mock-up. It was found that the TPR calculation shows a tendency to underestimate. From the sensitivity analysis it was found that the total TPR is most sensitive to the elastic scattering in Be and the 7Li(n,T) reaction.