ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
M. E. Sawan, C. S. Aplin, G. Sviatoslavsky, I. N. Sviatoslavsky, A. R. Raffray
Fusion Science and Technology | Volume 52 | Number 4 | November 2007 | Pages 771-775
Technical Paper | Nuclear Analysis and Experiments | doi.org/10.13182/FST07-A1583
Articles are hosted by Taylor and Francis Online.
A blanket concept made of the low electrical conductivity SiCf/SiC composite and utilizing Li17Pb83 as coolant and tritium breeder has been developed and integrated with the magnetic diversion system. Neutronics issues related to tritium breeding adequacy particularly with the area lost to the dump plates at the ring and point cusps were addressed. Radiation damage and lifetime considerations for the SiCf/SiC structural material were also addressed. Another issue of concern is providing adequate shielding for the superconducting cusp magnets. Detailed neutronics analyses show that tritium self-sufficiency can be achieved. A 0.5 m thick water-cooled steel shield that doubles as the vacuum vessel is a reweldable lifetime component and will provide adequate shielding for the magnets.