ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Fermilab center renamed after late particle physicist Helen Edwards
Fermi National Accelerator Laboratory’s Integrated Engineering Research Center, which officially opened in January 2024, is now known as the Helen Edwards Engineering Center. The name was changed to honor the late particle physicist who led the design, construction, commissioning, and operation of the lab’s Tevatron accelerator and was part of the Water Resources Development Act signed by President Biden in December 2024, according to a Fermilab press release.
M. Sawan, L. El-Guebaly, P. Wilson
Fusion Science and Technology | Volume 52 | Number 4 | November 2007 | Pages 763-770
Technical Paper | Nuclear Analysis and Experiments | doi.org/10.13182/FST07-A1582
Articles are hosted by Taylor and Francis Online.
Detailed three-dimensional nuclear analyses have been carried out for the chamber of a power plant concept that utilizes the Z-Pinch driven inertial confinement technology with a target yield of 3 GJ and repetition rate of 0.1 Hz per chamber. The elliptical chamber concept was modeled with the double-layered Recyclable Transmission Lines (RTL). Thick liquid jets are utilized to breed tritium, absorb energy, and shield the chamber wall. Two liquid breeder options were considered; the molten salt Flibe and the LiPb eutectic (Li17Pb83). The chamber wall is made of the low activation ferritic steel alloy F82H. While both breeders have the potential for achieving tritium self-sufficiency, the thermal power is ~6.5% higher with LiPb. However, a 55% thicker jet zone is required with LiPb to provide adequate chamber wall shielding. A thicker chamber wall is required with LiPb to reduce the nuclear energy leakage below 1%. The chamber wall does not need replacement except for the top part around the jet nozzles. Helium production in the chamber wall protected by LiPb is much lower than that with Flibe. Rewelding is possible only in the lower part of chamber wall below the pool.