ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Yuto Takeuchi, Yasushi Yamamoto, Satoshi Konishi
Fusion Science and Technology | Volume 52 | Number 3 | October 2007 | Pages 756-760
Technical Paper | The Technology of Fusion Energy - Nonelectric Applications | doi.org/10.13182/FST07-A1581
Articles are hosted by Taylor and Francis Online.
The paper proposes a conceptual design of hydrogen production system with unused biomass wastes and steam generated from high temperature nuclear power systems including fusion reactor. A reaction of interest is expressed as a formula, (C6H10O5)n + nH2O => 6nH2 + 6nCO, which is accompanied by a large quantity of endothermic reaction. Basic experiments have been made of thermal decomposition of cellulose, specimen as biomass resource, with the aid of high temperature steam of 1000 deg C heated by an infrared image furnace. The endothermic quantity was evaluated from a numerical model in which measured temperatures are employed. The numerical results for endothermic quantity agreed well with the theoretical value of 816 kJ/mol. To discuss the technical feasibility of the present process, the conceptual design of a hydrogen production reactor system of heat exchanger type was made with the numerical results and heat transfer correlations for helium and steam flow. The present biomass based process, producing both electricity and more hydrogen than other processes such as water or steam electrolysis using an equivalent quantity of heat source, is characterized as an efficient hydrogen production method using nuclear thermal energy, which simultaneously contributes to reduce biomass wastes.