ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Yuto Takeuchi, Yasushi Yamamoto, Satoshi Konishi
Fusion Science and Technology | Volume 52 | Number 3 | October 2007 | Pages 756-760
Technical Paper | The Technology of Fusion Energy - Nonelectric Applications | doi.org/10.13182/FST07-A1581
Articles are hosted by Taylor and Francis Online.
The paper proposes a conceptual design of hydrogen production system with unused biomass wastes and steam generated from high temperature nuclear power systems including fusion reactor. A reaction of interest is expressed as a formula, (C6H10O5)n + nH2O => 6nH2 + 6nCO, which is accompanied by a large quantity of endothermic reaction. Basic experiments have been made of thermal decomposition of cellulose, specimen as biomass resource, with the aid of high temperature steam of 1000 deg C heated by an infrared image furnace. The endothermic quantity was evaluated from a numerical model in which measured temperatures are employed. The numerical results for endothermic quantity agreed well with the theoretical value of 816 kJ/mol. To discuss the technical feasibility of the present process, the conceptual design of a hydrogen production reactor system of heat exchanger type was made with the numerical results and heat transfer correlations for helium and steam flow. The present biomass based process, producing both electricity and more hydrogen than other processes such as water or steam electrolysis using an equivalent quantity of heat source, is characterized as an efficient hydrogen production method using nuclear thermal energy, which simultaneously contributes to reduce biomass wastes.