ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Sal B. Rodriguez, Randall O. Gauntt, Randy Cole, Katherine McFadden, Fred Gelbard, Len Malczynski, Billy Martin, Shripad T. Revankar, Karen Vierow, Dave Louie, Louis Archuleta
Fusion Science and Technology | Volume 52 | Number 3 | October 2007 | Pages 752-755
Technical Paper | The Technology of Fusion Energy - Nonelectric Applications | doi.org/10.13182/FST07-A1580
Articles are hosted by Taylor and Francis Online.
A hypothetical Z-Inertial Fusion Energy (IFE) plant was coupled to a sulfur iodine (SI) thermochemical cycle using a new version of MELCOR called MELCOR-H2. MELCOR-H2 was designed to model nuclear reactors that are coupled to thermochemical plants for the production of electricity and hydrogen.The Z-IFE input model consisted of three major system components - a fusion heat source control volume with several types of boundary conditions, an SI loop, and a Brayton secondary system. The components were coupled in order to investigate system feedback and hydrogen production. The input model was modified so that various parametric studies could be conducted. Particular emphasis was placed on plant operating temperature and maximizing hydrogen production.This paper summarizes the results of the SI system model as it was driven by temperature changes in the primary circuit that simulated those that would occur in a Z-IFE driven reactor.