ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Fermilab center renamed after late particle physicist Helen Edwards
Fermi National Accelerator Laboratory’s Integrated Engineering Research Center, which officially opened in January 2024, is now known as the Helen Edwards Engineering Center. The name was changed to honor the late particle physicist who led the design, construction, commissioning, and operation of the lab’s Tevatron accelerator and was part of the Water Resources Development Act signed by President Biden in December 2024, according to a Fermilab press release.
P. Phruksarojanakun, P. P. H. Wilson, B. B. Cipiti, R. M. Grady
Fusion Science and Technology | Volume 52 | Number 3 | October 2007 | Pages 744-751
Technical Paper | The Technology of Fusion Energy - Nonelectric Applications | doi.org/10.13182/FST07-A1579
Articles are hosted by Taylor and Francis Online.
Efficient burn up of minor actinides is one of the most promising alternatives for minimizing waste in advanced nuclear fuel cycles. This work examines the concept of employing Z-pinch driven fusion source in a sub-critical transmutation reactor designed to burn up actinides and generate constant power. Its fuel cycle is designed to allow on-line fission product removal and fuel replenishment. The variation of the actinide inventory is an essential quantity used to calculate the energy multiplications and neutron spectrum, as well as to design an appropriate reactivity control mechanism.In this paper we develop a method to calculate timedependent isotopic distributions, fuel feeding rate and fission product removal rate necessary to obtain a constant power level. The calculation is performed by using both MCise, a Monte Carlo isotopic inventory code, and MCNP5. An important feature of MCise for this system is the ability to simulate the on-line removal of fission products from the actinide mixture.In addition to reporting the actinide inventory and burn rates, the impact of the actinide inventory on the fission/fusion energy multiplication will be examined.