ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
P. Phruksarojanakun, P. P. H. Wilson, B. B. Cipiti, R. M. Grady
Fusion Science and Technology | Volume 52 | Number 3 | October 2007 | Pages 744-751
Technical Paper | The Technology of Fusion Energy - Nonelectric Applications | doi.org/10.13182/FST07-A1579
Articles are hosted by Taylor and Francis Online.
Efficient burn up of minor actinides is one of the most promising alternatives for minimizing waste in advanced nuclear fuel cycles. This work examines the concept of employing Z-pinch driven fusion source in a sub-critical transmutation reactor designed to burn up actinides and generate constant power. Its fuel cycle is designed to allow on-line fission product removal and fuel replenishment. The variation of the actinide inventory is an essential quantity used to calculate the energy multiplications and neutron spectrum, as well as to design an appropriate reactivity control mechanism.In this paper we develop a method to calculate timedependent isotopic distributions, fuel feeding rate and fission product removal rate necessary to obtain a constant power level. The calculation is performed by using both MCise, a Monte Carlo isotopic inventory code, and MCNP5. An important feature of MCise for this system is the ability to simulate the on-line removal of fission products from the actinide mixture.In addition to reporting the actinide inventory and burn rates, the impact of the actinide inventory on the fission/fusion energy multiplication will be examined.